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Stability of Isotropic Incompressible Turbulence 
Against Weak Mean Flow Perturbations 
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The stability of incompressible turbulent fluids with respect to weak mean flow 
perturbations is discussed. It is shown that for a statistically homogeneous, 
isotropic, and stationary model such perturbations will decay. This is in marked 
contrast to the compressible case. 
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When describing the phenomenon of turbulence, much emphasis is often 
placed on ensembles of flows which are incompressible and, in a statistical 
sense, homogeneous, isotropic, and stationary. Whether or not such 
turbulence exists in real flows is a moot point, but certainly this form is 
mathematically more tractable. It is also often stated that turbulence 
resulting from the flow of a turbulent fluid past a grid" approximates to 
being homogeneous and isotropic. (~) In a wide variety of experiments, 
however, large-scale coherent vortex structures are observed. (2) This 
presents an intriguing challenge to theorists: what is a possible mechanism 
which would enable ordered structures to be formed from the seemingly 
chaotic motion of a turbulent fluid? Moreover, does the form of turbulence 
described above represent an adequate model for describing the formation 
and evolution of such structures? To pose the question in a more physical 
way: consider an ensemble of turbulent flows on which, at some time to, in 
every realization we impose the same large-scale velocity pattern 
(v(x, to)); how will this ensemble evolve? Will the perturbation grow with 
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time and will concomitant vortex growth ensue? If so, upon what physical 
parameters of the unperturbed turbulent flows will this depend? 

The stability of a variety of small-scale flows, such as ABC and 
Kolmogorov flows, subjected to large-scale perturbations has recently 
received close attention in a number of papers. Shtilman and 
Sivashinsky ~3'4) have considered simple periodic flows and have used 
asymptotic expansions to show that, for large Reynolds numbers, such 
flows could be unstable to long-wavelength perturbations, a result also 
obtained by Galloway and Frisch/5) in numerical simulations. Bayly (6) has 
suggested, using Floquet theory, that quasi-two-dimensional flows in which 
the streamlines all form closed curves could be subject to broad-band 
instabilities. All these predicted instabilities may have their origin in the 
fundamental anisotropy of the basic flows considered, as research by 
Sivashinsky and Yakhot, ~7) Bayly and Yakhot, ~8~ Pouquet et aL, ~9) 
Kraichnan, (1~ and Yakhot and Pelz ~11) suggests. 

Other authors have discussed the effect that helicity and helicity 
density may have upon the stability of turbulent fluid systems. Moffatt, (12~ 
using the equivalence between the MHD equations and the Navier-Stokes 
equation, showed that Beltrami flows are unstable against perturbations 
whose helicity is of the same sign as that of the basic flow. Pouquet et al. (9~ 
have used renormalization group (RG) methods to show that helical 
forcing can introduce an additional term into the Navier-Stokes equation; 
they show, however, that this term is negligible at large scales. An 
interesting and informative article by Moiseev et al. ~13)'4 combined the two 
physical aspects mentioned above: they looked at an ensemble of turbulent, 
compressible fluids which were statistically homogeneous, isotropic, and 
stationary and possessed a nonzero mean helicity density; they then subjec- 
ted the ensemble to large-scale velocity and density perturbations. It is 
instructive to examine their final equations closely. These equations are 

a ( v ) - g ( O ) v •  v+  V a ( v ) - ~ ~  (1) 
~?t 2 P0 

for the velocity, where here and henceforth ( . . . )  indicate ensemble 
averages and where Co is the sound speed, which in the model of ref. 13 is a 
constant, and 

"~(P-----~+V. ( ( p ) ( v ) ) + D ( O ) V .  ( v )  = C(O) V2(p)  (2) 
~t 

4 Ref. 13 contains a number of numerical errors. 
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for the density, where the unperturbed turbulent velocity and density fields 
v t and pt, respectively, are correlated as follows (here and henceforth 
summation over repeated indices is implied): 

(~l(x, t) v)(x', c)= C,Ax -x ' )  0 ( t -  c) 

= [C(r) ••+ B ( r )  r e r j+  g ( r )  8ijkrk] O(r)  
(3) 

(v~(x, t) pt(x ', t ' ) ) = D i ( x - x ' ) O ( t - t '  ) 

= D ( r )  r iO(r) ,  r = x - x ' ,  ~ = t - t' 

where ~,~k is the totally antisymmetric third-rank unit tensor. As the ensem- 
ble considered is assumed to be statistically homogeneous, isotropic, and 
stationary, these are the most general forms that two-point correlators can 
take. (13) If g ( r ) . ~  0 for some r, then the ensemble will lack reflectional sym- 
metry. Moreover, it follows from Eq. (3) that the mean helicity density 
((v t" V x v t))  equals 6g(0) 0(0). Moiseev et  al. 03) chose g(0) r 0, so that 
there is a mean helicity density, and thus a preferred "handedness" for the 
system. They also assume that there exists a time re, the correlation time of 
the turbulent velocity field, such that 0 ( r ) = 0  when z>>-rc. In their 
equations, the bulk viscosity term ffV(V. ( v ) )  was neglected. For con- 
sistency, they should have neglected the terms which are quadratic in the 
averaged quantities, since in their derivation these have already been 
assumed to be small. Furthermore, the condition ( ( v t . V ) p t ) = 0  
requires (1) that D ( 0 ) =  0. The second of Eqs. (3) thus becomes 

OKp >~at = c(o) V~ Kp ) (4) 

Since it follows from Eq. (3) that C(0) is positive definite, the density per- 
turbation decays, but Fourier transforming Eq. (1) and assuming the usual 
plane-wave dependence of the perturbations, one finds that vortex growth 
is possible in the following wavenumber range: 

g(0) 
O~<k~< (5) 

2v + C(O) 

This is a purely kinematic effect; an inviscid fluid could be considered in 
which the pressure is constant: each fluid particle would then move along a 
streamline with constant velocity, but the instability would still occur. The 
equation derived by Moiseev et  al. ~13~ is, however, not a feasible form for 
perturbations to an incompressible fluid, despite the lack of dependence on 
the pressure term--and hence on the equation of state. To see this, it 
should be remembered that angular momentum is conserved in every 
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realization of the flow, and thus it should also be conserved after ensemble 
averaging. This is not the case for an incompressible fluid if Eq. (1) is valid, 
even if nonlinear terms are included (see Appendix). It is therefore 
interesting to investigate the question of vortex formation in homogeneous, 
isotropic, incompressible turbulence in close detail, employing the simple 
technique developed in ref. 13, and to trace, if possible, where the 
derivation of Eq. (1) breaks down for an incompressible fluid. 

Consider an ensemble of incompressible fluids, the nth realization of 
which has a velocity field vt,. For  the sake of simplicity, we shall drop in 
what follows the index n. This velocity field is a solution of the 
Navier Stokes equation, so that 

~ tV~-I- I)~ ~jt)~--= V ~2V~- ~i p t ~- F i (6) 

where we have put 

~t~-3/~t, ~i~---~/~Xi, ~2~---V2 (7) 

In Eq. (6), v t, x, and t are, respectively, the local turbulent fluid velocity, 
the position, and the time; the density has been put equal to unity. 
Equation (6) gives, if we take its divergence, an equation for the pressure pt 
which closes the set of equations. This equation is 

We assume that the statistics for the turbulent fields is still given by the 
first of Eq. (3), but we shall not assume that g(0) is necessarily nonzero. 
We now impose at some time t =  to the same perturbation (v(x, to)) on 
every realization, so that at any subsequent time the velocity and pressure 
fields v and p can be represented by 

V ~_ (V) ..~_ vt ..~_ V1; p=(p)+pt+pl (9) 

in which one can interpret v I and p l as interaction terms. These have been 
introduced since it is not, in general, possible to decompose the 
Navier-Stokes equation into a large-scale part and a fluctuating remainder, 
of which the latter is then further assumed to obey the Navier-Stokes 
equation. The two interaction terms are initially zero and are of zero mean. 
They are thus well defined for all subsequent times. The total velocity field 
obeys the Navier-Stokes equation as well as Eqs. (9), so that an equation 
for the evolution of the perturbation can be obtained by inserting Eqs. (9) 
into the Navier-Stokes equation and then performing the ensemble 
average. As we are free to consider small perturbations, so that the mean 
and interaction fields are much smaller in magnitude than the basic 
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flow--at  least in the initial stages--the resulting expression may be 
linearized and written as 

O,(v,) + ~j(v',~) + v)v~ ) = v 32(vi)  - ~ X P )  (10) 

and is of a form analogous to the Reynolds stress equation (see, e.g., 
ref. 14). The pressure equation can be found simply by taking the 
divergence of Eq. (10) and gives 

02(p)  = 20,O~(vlv ) ) (11) 

Equations (10) and (11) will form a closed set once we have calculated the 
correlators 

Q~(x, t)= (v~(x, t) v)(x, t)) (12) 

The closure problem has arisen, as usual, from the averaging procedure; to 
progress further, we must make additional assumptions about the nature of 
the turbulence. We shall assume that v t obeys Gaussian statistics. The 
Gaussian approximation is arguably not particularly good for describing 
real flows, but it does hold well for large-scale components of the velocity 
field (see, e.g., ref. 15). Moreover, this statistical treatment should be at 
least not worse than the deterministic models used before in investigating 
the problem of mean flow stability. As v I is a functional of v t, we then find 
from the Novikov-Furutsu formula ~16'1v) and Eq. (3) that 

Qu(x, t)= f d3x' dt ' Cik(X-- X') O(t-- t' ) (13) 

In order to evaluate the functional derivatives in Eq. (13), we must find an 
equation for the interaction fields. If we substitute Eqs. (9) into the 
Navier-Stokes equation and use Eq. (10), we obtain after some sim- 
plifications 

(~t vl-~ (<v> 'V)  yt..~ (u165 = -Vpt-{-Z{u t} (14) 

where Z{u t} is a known functional of vt. A formal solution of Eq. (14) can 
be obtained by integrating it over the time. We write the result in the 
following form: 

~v)(x, c) ' 0(vj(x,t')) (Vq(X, t')) if(x, t ) = ; o  dt' -Vq(X, t') ~Xq 8Xq 

~p'(x, c) + z~] (15) 
0xj J 
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Obtaining the functional derivative is then straightforward: 

6v)(x, t ) I =  -O( t - t ' ) {6 (x -x ' )  8(vj(x' t')) 
~v~(x', t') axq 

-~- </)q(X, tt) ) ~ [r 
~Xq 

\6vtk(x ', t')/ + \Tvk/ 3 (16) 

where O ( t - t ' )  is the Heaviside step funtion and where 

\ av,/  av',(x', c) /  

/ t) c')\ 
+ \ ~ U x ' ,  c)  Ux~- / 

( o l,,)j/j (17t - ~(x ,  C)~x~\a~k(x,  ' 

It can be shown that the right-hand side of Eq. (17) can be neglected, 
provided 

Ivtl min(2, L) min(2, L) 
>> 1 and >> 1 (18) 

v Iv~l ~c 

in which 2 and L are the length scales of the background turbulence and of 
the perturbations, respectively. We note that the conditions (18) do not 
necessarily restrict us to the case of large-scale perturbations when 2/L < 1. 
The first of these inequalities means that the Reynolds numbers for the 
unperturbed and for the average velocities must be large, so that we are 
dealing with truly turbulent flows. The second inequality is a condition that 
the time scales on which these velocity fields change should be much longer 
than the correlation time of the basic flow. 

The functional derivatives of the interaction pressure with respect to 
the turbulent velocity field can be evaluated in a similar manner and we 
get, to the same approximation as before, 

tfpl(x:t",)\=2 OG(x-x')~<vp(x',t")> 6(t'-t") (19) 
6vtk(x , t )/ Ox'p Ox'k 

Finally, this equation is integrated over t" to give 

fo,,m, /ap'(x, c')\ =20(t-t')a(vp(x', t ')) aG(x--x') (20) 
\~v~(x',  t') / ax'~ ax'p 
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In Eqs. (19) and (20), G ( x - x ' )  (=  -1/4~ [x-•  is the Green function 
for the Laplace equation. The response of the interaction velocity to a 
change in the turbulent velocity field is thus, when averaged, 

~v)(x, t )  = - o ( t - r )  ~ ( x - x ' )  
,~v~(x', t') ax~ 

+ (vq(x, t')) I~x ~u~(x- x') ] 

+ 2 9G(X~xT_ x') 9 (Vp(X',gx2 t') )} (21) 

As the step function is zero for t < t', causality is not violated. We can now 
insert the functional derivative (21) into Eq.(13) and perform the 
integrations for the first two terms to obtain 

9(vj(x, t ' ))  
Q~j(x, t) = - f dt' O ( t -  t') (~(t-- t') C~k(O) 

OXk 

- 2 f dt' d3x ' O(t - t') (~(t - t') C i k ( X  - -  X') 

9 [ 9 G ( x - x ' )  9(Vp(X', t ' ) ) ]  (22) 

• ~j  L ~ 9x~ 

Using Eq. (3), we can now perform the first integral in Eq. (22) and if we 
additionally assume that O(z) is a delta function, we get 

1 ( v .  
Q,j(x, t)= - ~  C(O) 9 ~ )  

f dSx, 9(Vp(X', t)) / 82 82 \ 9x'k ~Cik~+C,k~)G (23) 

The evolution for the perturbation can thus be found by inserting Eq. (23) 
into Eq. (10). This gives 

9,( v~) = [v +-C-?-] W ( v~) - 9~(p ) 

9 2 9 2 
9j f d3x ' + ( C i k ~ + C j k ~ ) G  (24) 

While this may look complicated, it should be borne in mind that the only 
thing we are interested in at the moment is a dispersion relation for the 
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growth of the perturbation, that is, a relationship between the growth rate 
7 and the wavevector k. To find this relation, we notice that both the Green 
function for the Laplace equation and the two-point velocity correlator 
depend solely on the separation between two points, that is, on r = x -  x'. 
Moreover, Eq. (24) is linear in (v ) .  Hence, Eq. (24) can be regarded as an 
integral equation for ( v )  which possesses a displacement kernel. The stan- 
dard procedure to deal with such equations (see, e.g., ref. 18) is to Fourier 
transform. This gives 

F(k, co) u,(k, co) = ik,Fo(k, co) + ik,p(k, co) (25) 

where we have written 

F(k, co) = - i c o + I v + - ~ ] k 2  (26a) 

p(k, co) = F .T. [ (p(x ,  t ) ) ]  (26b) 

u~(k, co) = F.T.[(v~(x, t ) ) ]  (26c) 

{f d3x' c~2 c~2 Fo(k, co) 

c?(vp(x', t') ) ; (26d) • 
Ox2 J 

As the term containing the integral is a convolution, Fourier transformed it 
produces a product 

Fij(k, co)=ikqupxF.T. -Ciq(r)&jgr p C j q ( r ) ~  G(r) (27) 

To evaluate the Fourier transforms which remain in Eq. (27), we Fourier 
transform the quantities C~(r) and G(r) separately and, noting that we will 
obtain a convolution, obtain the coefficient of Up as an integral over 
Fourier space. We have 

Ciq(r) 02G(r) . . . . . .  kjk'p k") &j&p-fd3k'd3k"q%tK ) --~75- exp [i(k' + . r ]  (28) 

so that 

I 020 ] =  qSiq(k')(k - k')J (k - k')p 
F.T. Ciq(r) arjOrpj f d3k ' [k_k,12 (29) 
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where we have introduced the energy spectrum tensor (1~ through the 
equation 

�9 iq(k) = F.T. [Ciq(r ) ]  (30) 

and used the fact that F .T . [G( r ) ]=  1/k 2. If we also use the incom- 
pressibility condition ( k . u ) =  0, we get finally from Eq. (25) 

(d3k, ( kjk'p- kjkp) ~iq(k') + (k;kp-  kikp) (Pjq(k')t Fui= iki kjkqu. P 
. 

(31) 

It is known, however, that for homogeneous, isotropic turbulence the most 
general form for the energy spectrum tensor is (19~ 

, ,  E(q), 2 e  , iF(q) 
~biktq) =4~3q4 ~q oik -- qiqk) + ~  ei~:sq, (32) 

where E(q) and F(q) are, respectively, the energy and helicity spectral 
densities which satisfy the relations 

( v 2 / 2 ) = f  dqe(q), ( v ' m )  = f  dqF(q) (33) 

where r  v. One of the consequences of Eqs. (33), which follows from 
the Schwartz inequality, is that for any wavenumber qO9) 

F(q) <~ 2qE(q) (34) 

a relation which will be important in what follows. It is instructive to write 
Eq. (31) in the form 

Cui =-- -Tipu p q- iki p (35) 

and then to observe that, as Tip(k ) is a second-rank tensor, from its 
definition it should be possible to express it in the form 

Tip(k) = K(k) 6,p + L(k) kik p + M(k) eipsks (36) 

When this is inserted into Eq. (35) we get, after again using the incom- 
pressibility condition, 

f'u = K(k)u - M(k)k  x u + ikp (37) 

If we take the scalar product of this equation with k, we obtain 

k2p=0 or V 2 p = 0  (38) 
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Since we require that the pressure gradient tends to zero at infinity and 
also remains finite at the origin, the solution of Eq. (38) is simply p = const. 
Thus, the equation for the perturbation can be written in the form 

( F - K ) u =  - M k x u  (39) 

The K(k) term can be considered as a turbulent, or eddy, viscosity, while 
the M(k) term represents vortex generation, since in Fourier space 

~o(k, t) = ik x u(k, t) (4o) 

Together with the incompressibility condition, Eq. (39) presents us with 
three linear homogeneous equations for the three velocity components and, 
in order that these three equations be compatible, we get the dispersion 
relation 

r (k ,  ~o) = K(k ) + ikM(k ) (41) 

This relation replaces Eq. (33) of ref. 13, just as Eq. (39) replaced Eq. (32) 
of that paper. We must now evaluate K(k) and M(k). To do this, we take 
our 3-axis along the wavevector k. If we then turn to Eq. (36), we find 

or, explicitly, 

Tll = K(k), T12 = kM(k)  (42) 

Tll = f d3q 

T12 = f d3q 

(k2q3 - k3) q~ q513(q) + k2q~ ~33(q) 
[k --ql 2 (43) 

(k2q2q3 - k3q2) qs~3(q) + k2qlq2q533(q) 
(44) 

Ik - q l  2 

Tll and T12 can be (partially) evaluated by introducing spherical coor- 
dinates, as one can then integrate analytically over the angle variables. The 
result is 

T , l=  f dqqE-~(4q) k z ( 2 q l a - k I 3 -  3qlz + kI1 + qlo) (45) 

F(q) k2 ̀  T12 = i f dq ---if- t - qI3 + kI2 + qI1 - klo) (46) 

where the integrals I n are defined by 

f 
+l cn dc 

I n = 
- 1  k 2 +-qT~2kqc (47) 
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with c = cos 0, where 0 is the angle between k and q. Such integrals are well 
documented and recursion relations are readily found(2~ 

k 2 + q  2 1 - ( - 1 )  n 
I. = - - / ~  1 (48) 

2kq 2kqn 
while Io is given by the expression 

1 k + q  (49) 1o = ~q ~2-~_ q 

It then follows that 

T11= f dq E(q) pI(p), Tlz= f dq~-~ I(p) (50) 

where p = q/k, while I(p) is given by the equation 

1 [(p2 1) 3 ~I+P - 3 ) ( p 2 + ~ ) ]  (51 I(p) = 3--~p 2 - in - 2 p ( p  2 ) 

To determine the stability characteristics of the perturbation, we write 
down the growth rate 7: 

where J(p) = 3I(p). There will be an instability, resulting in a growth of the  
perturbation and a production of large-scale vortices, if the right-hand side 
of Eq. (52) becomes positive for some value of k. We recall, however, that 
it follows from Eq. (34) that the largest value 7max will occur when the 
equality sign holds in Eq. (34), so that 

Therefore, an instability can occur only if for some p 

S(p) = 1 + J(p)(p- 1 ) < 0  

(53) 

since we know that E(q) is positive definite. However, we see from Fig. 1 
that S(p) is always greater than zero. 

We have thus shown that, in a wide range of scales, weak, mean- 
motion perturbations to an incompressible, homogeneous, isotropic, and 
statistically stationary ensemble of fluids will decay; such an ensemble is 
therefore stable against this class of perturbations. This result agrees with 

(54) 
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F i g .  1 .  S(p) a s  a f u n c t i o n  o f  p .  

the work by Bayly and Yakhot, (8) whose field-theoretic description of 
deterministic, small-scale, strong Beltrami flows indicated that the effect of 
small-scale motion is to "renormalize" the molecular viscosity which, as in 
our calculations, is still positive for isotropic motion. It also agrees with 
their result that this effective viscosity is independent of the molecular 
viscosity at large Reynolds numbers. Furthermore, the results confirm the 
RG treatment given in ref. 9, which shows that the effect of helicity is to 
oppose the eddy viscosity term, and thus to inhibit energy transfer to small 
scales, a result also obtained by Kraichnan. (1~ Encouraged by the wide 
variety of different methods employed by other researchers which yield 
essentially all the same conclusions, we tentatively suggest that for incom- 
pressible fluids large-scale vortex formation requires anisotropy in the 
unperturbed flow. To investigate this claim further, we hope elsewhere to 
discuss the calculations presented here in greater detail and also to treat 
the two-dimensional case for which the fundamental anisotropy (which at 
the least corresponds to axisymmetry) is simpler to deal with analytically. 

A P P E N D I X  

Here we show that Eq. (1) cannot be valid for incompressible flows. 
To begin with, we write the Navier-Stokes equation in the form 

Ot-Oxj \Oxj Oxijj + Fi--~-~j au+ Fi (A.1) 
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where o 0. is a symmetric tensor, so that o 0 = crib. Accordingly, the vorticity 
equation can be written as 

0e~ i 02crop c~F k 
- -  = ~ o k  - -  + ( A . 2 )  Ot Oxj 3Xp eiJk ~Xj 

It is possible to show that the mean angular momentum, defined by 

{L}  = p  f x x  {v} d3r (A.3) 

is conserved if the velocity field obeys the Navier-Stokes equation, but not 
if it obeys the incompressible version of Eq. (1). However, there are some 
problems concerning the finiteness of the integral in Eq. (A.3) when the 
fluid volume is unbounded, <2II so we chose to consider the moment of the 
impulse required to generate the fluid motion from rest. This is 

and hence 

1 M=~p f x•215 (A.4) 

0--7-=~p x x  xx--~- d3r (A.5) 

Inserting expression (A.2) into (A.5) and using Gauss' divergence theorem, 
we obtain for the mean impulse 

3 ( M i }  2 f cqt =-3P eO.k{ajk } d 3 r = 0  (A.6) 

as a o is symmetric, e~jk totally antisymmetric, and {F~} equal to zero. 
However, if Eq. (1) were valid, we would have 

, c(o)3 a (a(v,) .  a<vj)'~ a 8{vi} g(O)(~oi}+ 

(A.7) 

which can be written in the following form: 

a<v,)at axja [g(O) , , ~] I----f-- e~k~,vk? + S U (A.8) 

where S~ is symmetric. The rate of change of the mean impulse is thus 

0{Mi}  
_ 2pg(0) f {v,} d3r (A.9) 

0t 3 
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This is not  necessar i ly  zero, and  hence we see that  conserva t ion  of the 
impulse  and,  if the existence and  finiteness of the in tegral  in (A.2) are given, 
the angu la r  m o m e n t u m  are no t  compa t ib l e  with Eq. (1). This suggests that  
Eq. (1) is no t  val id for incompress ib le  fluids. 
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